Analysis of iterative methods for saddle point problems: a unified approach

نویسنده

  • Walter Zulehner
چکیده

In this paper two classes of iterative methods for saddle point problems are considered: inexact Uzawa algorithms and a class of methods with symmetric preconditioners. In both cases the iteration matrix can be transformed to a symmetric matrix by block diagonal matrices, a simple but essential observation which allows one to estimate the convergence rate of both classes by studying associated eigenvalue problems. The obtained estimates apply for a wider range of situations and are partially sharper than the known estimates in literature. A few numerical tests are given which confirm the sharpness of the estimates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized iterative methods for solving double saddle point problem

In this paper, we develop some stationary iterative schemes in block forms for solving double saddle point problem. To this end, we first generalize the Jacobi iterative method and study its convergence under certain condition. Moreover, using a relaxation parameter, the weighted version  of the Jacobi method together with its convergence analysis are considered. Furthermore, we extend a method...

متن کامل

A Unified Approach for Uzawa Algorithms

We present a unified approach in analyzing Uzawa iterative algorithms for saddle point problems. We study the classical Uzawa method, the augmented Lagrangian method, and two versions of inexact Uzawa algorithms. The target application is the Stokes system, but other saddle point systems, e.g., arising from mortar methods or Lagrange multipliers methods, can benefit from our study. We prove con...

متن کامل

Convergence of a Class of Stationary Iterative Methods for Saddle Point Problems

A unified convergence result is derived for an entire class of stationary iterative methods for solving equality constrained quadratic programs or saddle point problems. This class is constructed from essentially all possible splittings of the n×n submatrix residing in the (1,1)block of the (n+m)×(n+m) augmented matrix that would generate non-expansive iterations in R. The classic multiplier me...

متن کامل

A Generalization of Local Symmetric and Skew-symmetric Splitting Iteration Methods for Generalized Saddle Point Problems

In this paper, we further investigate the local Hermitian and skew-Hermitian splitting (LHSS) iteration method and the modified LHSS (MLHSS) iteration method for solving generalized nonsymmetric saddle point problems with nonzero (2,2) blocks. When A is non-symmetric positive definite, the convergence conditions are obtained, which generalize some results of Jiang and Cao [M.-Q. Jiang and Y. Ca...

متن کامل

Performance Analysis of a Special GPIU Method for Singular Saddle Point Problems

In this paper, we first provide semi-convergence analysis for a special GPIU(Generalized Parameterized Inexact Uzawa) method with singular preconditioners for solving singular saddle point problems. We next provide a methodology of how to choose nearly quasi-optimal parameters of the special GPIU method. Lastly, numerical experiments are carried out to examine the effectiveness of the special G...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 71  شماره 

صفحات  -

تاریخ انتشار 2002